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Introduction and some Terminology

What is heat? Heat is a form of energy that can be transferred from one object

to another or even created at the expense of the loss of other forms of energy.

What is Temperature? Temperature is a measure of the ability of a substance,
or more generally of any physical system, to transfer heat energy to another

physical system.

What is thermodynamics?
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e The study of the relationship between work, heat, and energy.

* Deals with the conversion of energy from one form to another.

* Deals with the interaction of a system and it surroundings.

Or

e Thermodynamics, is a science of the relationship between heat, work,
temperature and energy . In broad terms, thermodynamics deals with the
transfer of energy from one place to another and from one form to anoth
The key concept is that heat is a form of energy corresponding to a definiea

amount of mechanical work.




Introduction and some Terminology

What is difference between Isothermal Process and adiabatic Process?

Isothermal process Adiabatic process
Isothermal process is defined as one @ Adiabatic process is defined as one of the
of the thermodynamic processes thermodynamic processes which occurs
which occurs at a constant without any heat transfer between the
temperature system and the surrounding
Work done is due to the change in Work done is due to the change in its
the net heat content in the system internal energy
The temperature cannot be varied The temperature can be varied
There is transfer of heat There 1s no transfer of heat

PV = nRT(0) PVY = Constant
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Introduction and some Terminology

Zeroth Law of thermodynamics: “if two systems are in thermal equilibrium with a
third system, they are in thermal equilibrium with one another”
If T1=T2 and T2=T3 then T1=T3

First Law of thermodynamics: “the change in internal energy of a closed system is equal to
-

the energy added to it as a result of heat plus the work that is done on the system” =
&

AEinternat = Q@+ W 2

. g

Second Law of thermodynamics: Kelvin-Planck statement (or the HeaE

Engine Statement) “it is impossible to devise a cyclically operating heat engine, the effect of which
is to absorb energy in the form of heat from a single thermal reservoir and to deliver an equivalent

amount of work’. AS = ASgystem + ASsurrounding

Third Law of thermodynamics: “It is impossible to reach absolute zero (0°K) in any

number of finite process”. n=1- =

T
n=1- Fz if T, =» 0 (absolute zero temperature),n = 100% practically impossible’
1




Introduction and some Terminology
o"law  fflaw  2¥Law 3l

Defines Defines the Energy Defines Flow of Numerical Value of
Temperature Energy & Concept  Entropy and
of Entropy absolute
temperature

Thermodynamic system: a quantity of fixed mass under investigation,

« Surroundings: everything external to the system
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- System boundary: interface separating system

N N work out

surroundings

and surroundings

- Universe: combination of system and surroundings.

system boundary

heat in




S.I.Unit

Property Definition Symbol
m3
Volume Volume of a substance vV
.
The Tr'an.slafic?nal, rPTaT.ionaI U Toules (J) ;
Internal Energy and vibrational kinetic gj
energy of a substance 5.
H |
Enthalpy U + PV Joules (J)
The entropy is a measure I Ivi
E of the lack of structure or S Jou es/ll(<e vin (J /
ntropy )

the amount of disorder in a
system




Introduction and some Terminology

Systems can be classified as:

« Open: mass and energy can be transferred between
system and surroundings

 Closed: energy can be transferred but not mass

 Isolated: Neither energy nor mass can be transferred
between system and surroundings
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A Closed system (a controlled mass) consists of a fixed amount of mass,
and no mass can cross its boundary. That is, no mass enters or leave
a closed system.
such as, Piston-cylinder device

An Open system (or a control volume ) is a properly selected region in
space. Both mass and energy can cross the boundary of a control volume.

such as, A Water heater, a furbine and a compressor, etc 0




Refrigerator, Clausius Statement of the Second Law:

* heat engine is a device through which a working substance is taken
through a cycle in such a direction that some heat is absorbed
while the temperature is high, a smaller amount is rejected at a
lower temperature, and a net amount of work is done on the,
outside.

« If we imagine a cycle performed in a direction reverse to that of
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an engine, the net result would be the absorption of some heat at
a low temperature, the rejection of a larger amount at a higher
temperature, and a net amount of work done on the working
substance.

A device that perform a cycle in this direction is called a

refrigerator, and the working substance is called a refriger'an‘r.e




Refrigerator, Clausius Statement of the Second Law:
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Fig. 1.1 (a) a heat engine and Fig. 1.1 (b) a refrigerator ”




Refrigerator, Clausius Statement of the Second Law:

Let the following notation (all positive quantities) refers to one complete cycle.
Q; = amount of heat rejected by the refrigerant.

Q; = amount of heat absorbed by the refrigerant.
W = Net work done on the refrigerant.

Since the refrigerant undergoes a cycle, there is no change in internal energy, and the first law becomes

Q-Q=-W
Hence,
Q=Q+ W

Means the heat rejected to the hot reservoir is larger than the heat extracted from the cold reservoir by the
amount of work done.
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The purpose of a refrigerator is to extract as much heat Q,as possible from the cold reservoig-
with the expenditure of as little work W as possible. The quantity that expresses the ability of a
refrigerator to do its job is therefore Q,/W, which is known as the coefficient of performance.
Hence, it is essential that work is always necessary to transfer heat from a cold o hot reservoir.
It would be beneficiary to mankind if no external supply of the energy were needed, but it must
certainly be admitted that experience indicates the contrary. This negative statement leads us

to the Clausius statement of the second law.

"It is impossible to construct a device that, operating in a cycle, will produce no effect
other than the transfer of heat from a cooler to a hotter body” °




Carnot’'s Theorem and Corollary:

Carnot's Theorem: "No engine operating between two given reservoir can be more
efficient than a Carnot engine operating between the same two reservoir”

Imagine a Carnot engine R and any other engine I working between the same two
reservoir and adjusted so that they both deliver the same amount of work W.

Thus,

.
| carnotengie R | Any Other engine I
~
Absorb heat Q; from the hot  Apgorb heat Q, from the hot z
reservoir. reservoir. )
E Perform work W. Perform work W.
Rejects heat Q;-W to the Rejects heat Q;-W to the cold
cold reservoir. e
Efficiency n, = W/Q Efficiency n, = w/Q'1




Carnot’'s Theorem and Corollary:

Let us assume that the efficiency of the engine I is greater than that of R. thus,
Ny > Mg

w w
— >— Hence, Q, > Q,
Q]_ Ql

Now let the engine I derive the Carnot engine R backward as a Carnot refrigerator. This is shown

symbolically in fig. 1.2.
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Carnot’'s Theorem and Corollary:

The engine I and the refrigerator R coupled together in this way constitute a self-acting device,
since all the work needed to operate the refrigerator is supplied by the engine. The net heat
extracted from the cold reservoir is

Q1—W—(Q{_W)=Q1—Qi

Which is positive. The net heat delivered to the hot reservoir is also Q, — Q. The effect therefore,
of this self-acting device is to transfer Q, — Q; units of heat from a cold reservoir to the hot
reservoir. Since this is a violation of the second law of thermodynamics (Clausius Statement) our
original assumption that n; > ny is false and Carnot’s theorem is proved.

We may express this result in symbols as n; < ny

The following corollary to Carnot's theorem may be easily proved:
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"All Carnot engine operating between the same two reservoirs have the same efficiency”

Consider two Carnot engines R, and R,, operating between the same two reservoirs. If we imagine R;
driving R, backward. Then Carnot's theorem states that,

Nr, = Mg,
If R, drives R, backward then,

Nr, = Mg,
It therefore follows that

Ngr, = Mg,

It is clear from the above result that the nature of the working substance which undergoinﬂ
Carnot cycle has no influence on the efficiency of the Carnot engine.




Kelvin Temperature Scale:

A Carnot engine absorbing Q; units of heat from hot reservoir at a temperature 6; and
rejecting Q, units of heat to a cold reservoir at temperature 6, has an efficiency ng
that is independent of the nature of the working substance. The efficiency therefore
depends only on the two femperatures, and we may write

Q2
ng =1- _1= @ (04,0,)

Where ¢ is an unknown function. Rearranging the above equation, we have,
Q2 _ L
Qi 1- ¢ (6,,62)
Were f is also an unknown function.

= f(61,6)
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Imagine now a Carnot engine operating between reservoir at 6, and 65, absorbing Q, at
0, and rejecting Qz at 6;. The same equation must hold as in the previous case; thus,

g_z = f(62,63)

Since the heat rejected by the first Carnot engine, Q,, is absorbed by the second
Carnot engine, both engines working together constitute a third Carnot engine, which
absorbs heat Q; from a reservoir at 6, and rejects heat Q3 to a reservoir at 6; where

Ql o

o = 6165




Kelvin Temperature Scale:

Since,

Q1 _ Q1/0Q3

Q; Q2/Qs

_ f(641,03)
Therefore, f(0,,0,) = oS

Now the temperature 65 is arbitrarily chosen; and since it does not appear in the Ief’r-
hand side of the above equation, it must therefore dropout the ratio on the r'lgh1'o
After it has been cancelled, the the numerator can be written (6;) and the-

denominator Y (6,) where i is another unknown function. Thus, z
@ _¥(6)
Q2 P(62)

The ratio on the right is defined as the ratio of two Kelvin temperatures and is
denoted by

G _nh

Q T,
Thus, two temperatures on the Kelvin scale are to each other as the heats absorbed
and rejected, respectively, by a Carnot engine operating between reservoirs at these
temperatures. It is seen that the Kelvin femperature scale is independent of
peculiar characteristics of any particular substance.




Kelvin Temperature Scale:

At first thought it might seem that the ratio of two Kelvin temperature would be
impossible to measure, since a Carnot engine is an ideal engine, quite impossible to
construct. The situation, however, is not as bad as it seems. The ratio of two Kelvin
temperatures is the ratio of two heats that are transferred during fwo isothermal
processes bounded by the same two adiabatic. The two adiabatic boundaries may be
located experimentally, and the heats transferred during two isothermal “nearly
reversible” processes can be measured with considerable precision. As a matter of
fact, this is one of the methods used in measuring temperature below 1°K. A

o

To complete the definition of the Kelvin scale we arbitrarily select the value of 273.16%
K to the temperature of the triple point of the water T;. Tus,

T, = 273.16°K

eLred Y

For a Carnot engine operating between reservoir at the temperatures T and T; we
have,

Q T
Q3 T3
T = 273.16°K <

) O




Kelvin Temperature Scale:

The absolute (Kelvin) o =
temperature scale is based on
fixing T of the triple point for Lot

water (a specific T = 273.16 K

and P = 611.73 Pa where water |
can coexist in the solid, liquid, and

gas phases in equilibrium).

0.006 akm :E

Q 2

T - 273-16OK — e e Temperature —— e e L'

Q3 =

T for an ideal gas constant-volume thermoscope o

T =273.16°K — =
T3

TlKA

273.16 P;» - the pressure of the gas in a constant-

volume gas thermoscope at T = 273.16 K

.
>

ON P P

absolute zero
T=273.16 K [Pj °

TP




Absolute Zero:

It follows from the equation

T = 273.16°K Qg

3

That the heat transferred isothermally between two given adiabatics decreases as
the temperature decreases. Conversely the smaller the value of Q, the lower the
corresponding T. the smallest possible value of Q is zero, and corresponding T is.g
absolute zero. Thus, if a system undergoes a reversible isothermal process withouts.
transfer of heat, the temperature at which this process takes place is called
absolute zero.

eureq Y]

In other words, at absolute zero, an isotherm and adiabatic are identical.

A Carnot engine absorbing heat Q; from the hot reservoir at T; and rejecting heat

Q to a cooler reservoir at T, has efficiency, n=1— 82 and 81 = %
1 2 2
T,
n=1- T,
n=1- =2 if T, » 0 (absolute zero temperature),

Iy
n = 100% practically impossible.




Carnot Cycle of an ideal Gas.
Equality of Ideal gas temperature and Kelvin Temperature:

A Carnot cycle of an ideal gas is shown in A
figure 1.3 the two isothermal processes b
— ¢ and d — a are represented by
equilateral hyperbolas whose equations

.
are, respectively i’
PV = nR#, z
PV = nRe,

and

Pressure ~

For any infinitesimal reversible process of
an ideal gas, the first law of
thermodynamic may be written as,

dQ = C,d0 + P dv

Volume V




Carnot Cycle of an ideal Gas.
Equality of Ideal gas temperature and Kelvin Temperature:

Applying this equation to the isothermal process b — ¢ the heat absorbed is found to be

Ve V

C

Q1=f Pdv=nR6, In—
Vp Vb

Similarly, isothermal process d — a the heat rejected is found to be

Va V
d
Q2=f Pdv=nR911n7

Va a
Therefore,
Ve
& - 0, In A
Q: ¢ e
0, In 7A
Since the process a — b is adiabatic, we may write for any infinitesimal portion
—C,d0 =Pdv
nRO
~Cydf =——dV

Integrating from a to b we gef,

1felc de =1 Va
nRJ, VTN,
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Carnot Cycle of an ideal Gas.
Equality of Ideal gas temperature and Kelvin Temperature:

Similarly for adiabatic process ¢ — d,

! elc 46 = In 24

[ = In—

n R 0, v V.
Va _ 1, Va Ve _ 1 Va 7
Therefore, In V= In = In o= Iy i’
And finally we geft, >
o)
o_6 _T :

QZ e2 TZ

If 6 and T refer to any temperature and, 65 and T; refer to the triple point
of water, the preceding equation becomes,

o T
93 a T3
Since 05 = T3 = 273.16°K it follows that 6 = T

The Kelvin temperature is therefore numerically equal to the ideal gas e
temperature and, in the proper range, may be measured with a gas
thermometer.




Let us consider a generalized work diagram in which generalized force % is plotted against

Clausius' Theorem

corresponding generalized displacement X for general discussions.

Consider a reversible process
represented by the smooth curve i =
f on the generalized work diagram
shown in figure 1.4. The nature of the
system is immaterial. The dotted
curves through i and f, respectively,
represent portions of adiabatic
processes. Let us draw a curve a = b
representing an isothermal process
in such a way that the area under the
smooth curve if is equal to the area
under the zigzag path iabf. Then the
work done in traversing both paths is

the same or

Generalized displocémen’r, X

Fig. 1.4 Generalized work diagram (i — f, any reversible
process; i — a, reversible adiabatic process, a — b,
reversible isothermal process, b — f, reversible adiabatic

process.)

A
\\\ (/Adxbbon'c
&: z\ )‘somc:rma/
S B
'E, // Adiabatic
% Areag under \f
o Lob [l equals \\
areai z’xrnder
T N
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Clausius' Theorem

Wif = Wiabf A
Now, Qlf = Uf - Ui + Wi ,And Qiabf = Uf - Ui + Wiabf
Qir = Qiany &:
QO
But since no heat is transferred in the two adiabatic bt
o
processes ia and bf, +
b
We have Qir = Qiany =
= -
If we are given, therefore, a reversible process in which the S 3
S a0
temperature may change in any manner, it is always 3 &~
possible to find a reversible zigzag path between the same :
two states, consisting of an adiabatic followed by a . %,
jov]
isothermal followed by an adiabatic, such that the heat Generalized displacement, X

transferred during the isothermal portion is the same as Fig. 1.5 Generalized work diagram (Smooth closed curve = reversible cycle;

that transferred during the original process. zigzag closed path = alternate reversible isothermal and adiabatic processes.)

Now consider the smooth closed curve representing a reversible cycle on the work diagram shown in fig. 1.5. Since no two
adiabatic lines can intersect a number of adiabatic lines may be drawn, dividing the cycle into a number of adjacent strips.
A zigzag closed path may now be drawn, consisting of alternate adiabatic and isothermal portions, such that the heat
transferred during all the isothermal portions is equal to the heat transferred in the original cycle. Consider the two

isothermal processes ab at the temperature T;, during which heat Q, is absorbed, and cd at the temperature T,, duri

which heat Q, is rejected. Since ab and cd are bounded by the same adiabatics, abcd is a Carnot cycle and we may write,

G _Q
T, T,




Clausius' Theorem

Ignoring the sign convention. Let us now adhere to the sign convention and regard any Q as an algebraic symbol, positive

for heat absorbed and negative for head rejected. We may then write, % + 3—2 =0
1 2

Where, Q, stands for a positive number and Q, for a negative number. Since the isothermals ef and gh are bounded by the

same two adiabatics efgh is also a Carnot cycle,and % + 3—4 =0
3 4

If a similar equation is written for each pair of isothermals bounded by the same two adiabatics and if all the equations are

added, the result is obtained that
QL% 0 %, . _g
TL T, T3 T4

Since no heat is transferred during the adiabatic portions of the zigzag cycle, we may write. Zg =0,
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Where the summation is taken over the complete zigzag cycle.

Now imagine the cycle divided into a very large number of strips by drawing a large number of adiabatics close together. If
we connect these adiabatics with small isothermals in the manner already described, a zigzag path may be traced that may
be made to appropriate the original cycle as closely as we please. When these isothermal processes become infinitesimal,
the ratio dQ/T for the infinitesimal piece of the original cycle bounded by the same two adiabatics. In the limit, therefore,

we may write, for any reversible cycle.

fi-

R
The circle through the integral sign signifies that the integration takes place over the complete cycle and the letter

emphasizes the fact that the equation is true only for a reversible cycle. This result is known as Clausius theorem.




Entropy and the Mathematical Formulation of the Second Law

Let an initial equilibrium state of any thermo dynamic system be represented by the point i on any convenient diagram

such as the generalized work diagram of Fig. 1.6.

}

Generalized torce, 7/

r,

Generalized displacement, X

Fig. 1.6 Two reversible paths joining two

equilibrium state if a system.

Denote a final equilibrium state by the point f. It is possible to
take the system from i to f along any number of different
reversible paths since i and f are equilibrium states. Suppose the
system is taken from i to falong the reversible path R; and then
back to i again along another reversible path R,. The two paths

obviously constitute a reversible cycle, and from Clausius’
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theorem, we may write.

fi-

RqR>

The above integral may be expressed as the sum of two integrals,

one for the path R; and the other for the path R,. We have them

jE_deQ + f}d?Q =0

R']. t Rz




Entropy and the Mathematical Formulation of the Second Law

fdQ _ idQ . : : B idQ _ fdQ : fae _ fae
ngSl_ — gSf - Since R, is areversible path. ) = st@ - And finally Rlsﬁ T sté T’

R> szT

Since R; and R, were chosen at random and represent any two reversible paths, the above equation

expresses the important fact that gSif % is independent of the reversible parth connecting i and f. It
R

therefore follows that there exists a function of thermodynamic coordinates of a system whose value at

the final state minus its value at the initial state equals the integral éif %. This function is called the
R

entropy and is denoted by S. If §; is the entropy at the initial state and Sy that at the final state, then we
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have the result that gS_f x_ Sf—S;
Rt T '

Where the difference S; - S;is the entropy change

Finally if the two equilibrium states i and f are infinitesimally near the integral sign may be eliminated
and Sy= S;becomes dS. The equation then becomes

4Qr _

7 ds

Where dS is an exact differential, since it is the differential of an actual function. The subscript R writte@

along with dQ indicates that the preceding equation is true only if dQ is transferred reversibly. This

equation is the mathematical formulation of the second law.




Entropy of an Ideal Gas

If a system absorbs an infinitesimal amount of heat dQy during a reversible process, the entropy change

of the system is equal to

It is interesting to notice that, although dQy is an inexact differential, the ratio dQz/T is
exact. The reciprocal of the Kelvin temperature is therefore the integrating factor of dQg. If dQp is
expressed as a sum of differentials involving thermodynamic coordinates, then, upon dividing by T, the

expression may be integrated and the entropy of the system obtained. As an example of this procedure,
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consider one of the expressions for dQg of an ideal gas, namely
Dividing by T, we get

dQx dT Vv
- = G g db

dsS = C ar RVdP
=GRz




Entropy of an Ideal Gas

Let us now calculate the entropy change A4S of the gas between an arbitrarily chosen standard state with

coordinates T, P, and any other state with coordinates T, P. Integrating between these two states, we get

AS = [; G5 = nRIng
Suppose we ascribe to the standard state an entropy Sg and choose any arbitrary numerical value for this
quantity. Then an entropy S may be associated with the other state where S - Sg = AS. To make the discussion
simpler, let C; be constant. Then

S=CInT—nRP+ (Ss—CpInTg +nRInF)
Denoting the quality in parentheses by the constant S,

S=CpInT —mRInP + S,
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Substituting for T and P thousands of different values, we may calculate thousands of corresponding values of S
which, after tabulation, constitute an entropy table. Any one value from this table, taken alone, will have no
meaning. The difference between two values, however, will be an actual entropy change.

Let us now return to the original differential equation
dr dp
dS =Cy —— nR —
T P
Again for simplicity, assuming Cg to be constant, we may take the indefinite integral and obtain S=

Cp INT —n R InP + S,

Where S, is the constant of integration. e




Entropy of an Ideal Gas

Since this is precisely the equation obtained previously, we see that, in taking the indefinite integral of
dS, we do not obtain an “absolute entropy,” but merely an entropy referred to a nonspecified standard
state whose coordinates are contained within the constant of integration. Thus, for an ideal gas

dr
S _— ICP?_ annP+SO

To calculate the entropy of an ideal gas as a function of T and V, we

}-U

Use the other expression for dQgof an ideal gas. Thus, Eh
e

dQp dT ~

T = Cy ?4‘ ? av f_%j

=

is= ¢, L+ npR ¥
T v
Proceeding in the same way as before, we get for the entropy, referred to an unspecified standard
state, the expression
S=[C,/ S+ nRInV + S

Which becomes, if C, is constant

S=CInT—nRInV+S5,




T-S Diagram

For each infinitesimal amount of heat that enters a system during an infinitesimal portion
of a reversible process there is an equation

dQg =T dS

It follows therefore that the total amount of heat transferred in a reversible process is

given by

This integral can be interpreted graphically as the area under a curve on a diagram in
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which T is plotted along the Y axis and S along the X axis. The nature of the curve on the T-
S diagram is determined by the kind of reversible process that the system undergoes.
Obviously an  isothermal process is a horizontal line

In the case of a reversible adiabatic process, we have

dS T

And dQR =0

Hence, if T is not zero, dS=0 Q

And S is constant.




T-S Diagram

Therefore during a reversible adiabatic process, the A
entropy of a system remains constant or, in other words,
the system undergoes an isentropic process. An isentropic
process on a T-S diagram is obviously a vertical line. It is

therefore clear that the two isothermal and the two

Temperoture 7

2
adiabatic processes which go to make up a Carnot cycle

e e s — — - — —
b e s e e o

form a rectangle on a T-S diagram, no matter what the

Y

: : . Entropy S
working substance is. Only reversible processes may be Py

Bl Y [ JoId

lotted on a T-S diagram since entr has been defined
plotted o $ diagram sinc Opy has been define Fig. 1.7 Reversible cycle on a T-S diagram.

only for equilibrium states.

The T-S diagram is particularly convenient for representing reversible cycles. The closed
curve shown in figure 1.7 consisting of an upper portion R; and a lower portion R,
represents a reversible engine cycle. The area under R, (positive area) is equal to the heat
absorbed Q, and the area under R, (negative area) to the heat rejected Q,. The area inside

the closed curve is therefore Q, - Q, or W. Since the efficiency of the engine is 1 - (QZ/Qle

it may be measured directly from the diagram.




Entropy and Reversibility

The fact that the area under a curve on a T-S diagram is equal to the heat transferred in a reversible
process is of some importance to the mechanical engineer but of little interest to the theoretical
physicist.
In order to understand the physical meaning of entropy and its significance in the world of science, it is
necessary to study all the entropy changes that take place when a system undergoes a process.
If we calculate the entropy change of the system and add to this the entropy change of the local
surroundings, we obtain a quantity that is the sum of all the entropy changes brought about by this
particular process. We may call this the entropy change of the universe due to the process in question.
When a finites amount of heat is absorbed or rejected by a reservoir, extremely small
changes in the coordinates take place in every unit of mass. The entropy change of a unit of mass is
therefore very small. Since, however, the total mass of a reservoir is large; the total entropy change is
finite. Suppose that a reservoir is in contact with a system and that heat Q is absorbed by the reservoir
at the temperature T. The reservoir undergoes nondissipative changes determined entirely by the
quantity of head absorbed. Exactly the same changes in the reservoir would take place if the same
amount of heat Q were transferred reversibly. Hence the entropy change of the reservoir is Q/T.
Therefore, whenever a reservoir absorbs head Q at the temperature T from any system during any kin

of process, the entropy change of the reservoiris Q/T.
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Entropy and Reversibility

Consider now the entropy change of the universe that is brought about by the performance of any
reversible process. The process will in general, be accompanied by a flow of heat between a system and
set of reservoirs ranging in temperature from T; to T;. During any infinitesimal portion of the process,
an amount of heat dQy is transferred between the system and one of the reservoirs at the temperature

T. Let dQs be a positive number; if dQg is absorbed by the system. Then

d
dS of the system = + % g;
=
. dQg 2
dS of the reservoir = — —— -
! >
And the entropy change of the universe is zero. ®
If dQg is rejected by the system then obviously
d
dS of the system = — %
dQp

dS of the reservoir = + -

And the entropy change the universe is again zero. If dQg is zero, then neither the system nor the

reservoir will have an entropy change and the entropy change of the universe is still zero. Since this i

S
true for any infinitesimal portion of the reversible process, it is true for all such portions, and therefore
we may conclude that, when a reversible process is performed the entropy of the universe remains

unchanged.




Reversible Vs Irreversible processes

A reversible process is _ /
defined as: m —
A reversible process is a H - N g Py
process whose direction F - —
can be reversed" by

inducing infinitesimal l 20°C $ -4°C l 20°C

changes to some property
of the system via its
surroundings, while not
increasing entropy.”

Or
A process that can be
reversed without leaving |

an change on the | "7 =D
roundings” PSR TV
surroundings.” ] =
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Reversible Vs Irreversible processes

“A process that is not reversible is called an Irreversible Process.”

» Inirreversible process, system passes through a series of non-
equilibrium states.

» lItis difficult to locate properties on property diagram as they don’t
have a unique value.

» When irreversible process is made to proceed in backward
direction, it does not reach its original state.

» The system reaches a new state.

» lIrreversible processes are usually represented by dotted lines.

The factors that cause a process to be Irreversible are :

Friction

Free Expansion

Mixing of two gases

Heat transfer between finite temperature difference

Electric resistance

Inelastic deformation

Chemical reactions

The presence of any of these effects makes a process irreversible. e
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Reversible Vs Irreversible processes

Clausius inequality conditions

d
ds = f TQ = 0, the process is reversible

d
dsS = f TQ < 0,the process is irreversible and possible

dQ - . 7
dsS = fT > 0, the process is impossible S
e
P~
&
dQ :
For any irreversible process, dS > -
. (dQ)rev
For any reversible process, dS > 0




Entropy and Irreversibility

When a system undergoes an irreversible process between an initial
equilibrium state and a final equilibrium state, the entropy change of the

system is equal to

Fd
Sp—Si= f—Q
R7I T

Where R indicates any reversible process arbitrarily chosen by which the
system may be brought from the given initial state to the given final state. No
integration is performed over the original irreversible path. The irreversible
process is replaced by a reversible one. This can easily be done when the initial
and the final state of the system are equilibrium states. When either the initial
or the final state is a non-equilibrium state, special methods must be used. At
first, we shall limit ourselves to irreversible processes all of which involve
initial and final states of equilibrium.
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Entropy and Irreversibility

Processes Exhibiting External Mechanical Irreversibility.

(a) Those involving the isothermal dissipation of work through a system (which
remains unchanged) into internal energy of a reservoir, such as

Irregular stirring of a viscous liquid in contact with a reservoir.

Coming to rest of a rotating or vibrating liquid in contact with a reservoir.

Inelastic deformation of a solid in contact with a reservoir.
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Transfer of electricity through a resistor in contact with a reservoir.

o1 & W Do

Magnetic hysteresis of a material in contact with a reservoir.

In the case of any process involving the isothermal transformation of work if
through a system into internal energy of a reservoir, there is no entropy change
of the system because the thermodynamic coordinates do not change. There is a
flow of heat Q into the reservoir where Q = W. Since the reservoir absorbs Q units
of heat at the temperature T, its entropy change is + Q/T or + W/T. The entropy
change of the universe is therefore W/T, which is a positive quantity.




Entropy and Irreversibility

Processes Exhibiting External Mechanical Irreversibility.

(b) Those involving the adiabatic dissipation of work into internal energy of a system such.

1. Irregular stirring of a viscous thermally insulated liquid.

2. Coming to rest of a rotating or vibrating thermally insulated liquid.

3. Inelastic deformation of a thermally insulated sold.

4. Transfer of electricity through a thermally insulated resistor

5. Magnetic hysteresis of a thermally insulated material

In the case of any process involving the adiabatic transformation of work W into internal energy of a system whose

temperature rises from T; to T; at constant pressure, there is no flow of heat to or from the surroundings and therefore
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the entropy change of the local surroundings is zero. To calculate the entropy change of the system, the original
irreversible process must be replaced by a reversible one that will take the system from the given initial state
(temperature T;, pressure P) to the final state (temperature T;, pressure P). Let us replace the irreversible performance
of work by a reversible isobaric flow of heat from a series of reservoirs ranging in temperature from T, to T. The

[rrae

entropy change of the system will then be Sy — Si (System) = T
r1Li

For an isobaric process dQg = Cp dT,and Sy — Si (system) fTTf Cpg

Finally, if Cp is assumed constant, Sy — Si (system)Cp In ;—f

and the entropy change of the universe is C; In (T;/ T;) which is a positive quantity.




Entropy and Irreversibility

Process exhibiting internal mechanical irreversibility.

Those involving the transformation of internal energy of a system into mechanical energy and then back into

internal energy again, such as

1.

2
3.
4

Ideal gas rushinginto a vacuum (free expansion)
Gas seeping through a porous plug (throttling process)
Snapping of a stretched wire after it is cut.
Collapse of a soap film after it is pricked.
In the case of a free expansion of an ideal gas, the entropy change of the local surroundings is zero. To

calculate the entropy change of the system, the free expansion must be replaced by a reversible process that
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will take the gas from its original state (volume V. temperature T) to the final state (volume V; temperature

T). Evidently, the most convenient reversible process is a reversible isothermal expansion at the

temperature T from a volume V. The entropy change of the system is then Sy — Si (System) : 4 %
R Vi
. : dQg av
For an isothermal process of an ideal gas And dQr = P dV and - = nR >

14
Whence Sy — Si (system) = nR In 7{

14
The entropy change of the universe is therefore,n R In ?J_c, which is a positive number @

L




Entropy and Irreversibility

Processes Exhibiting External Thermal Irreversibility.

Those involving a transfer of heat by virtue of a finite temperature difference, such as

1. Conduction or radiation of heat from a system to its cooler surroundings

2. Conduction or radiation of heat through a system (which remains unchanged) from a

hot reservoir to a cooler one.

In the case of the conduction of Q units of heat through a system (which remains

unchanged) from a hot reservoir at T; to a cooler reservoir at T,, the following steps are

obvious.

Sy — Si (system) = 0

Q

S¢ — Si (hot reservoir) = ——
Ty

S — Si (cold reservoir) = +T2

2

Sy — Si (univers) = = — =
2 1
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Entropy and Irreversibility

Processes Exhibiting Chemical Irreversibility.

Those involving a spontaneous change of internal structure, chemical composition,
density, etc. such as

A chemical reaction

Diffusion of two dissimilar inert ideal gases

Mixing of alcohol and water

Freezing of super cooled liquid.
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Condensation of a supersaturated vapor

o 1o W N

Solution of a solid in water

Assuming the diffusion of two dissimilar inert gases to be equivalent to two separate free

Vy

L

expansions, for one of which S — Si (universe) = nR In

And taking a mole of each gas with V= v, and V= 2v

we obtainS; — Si (universe) = 2R In 2

Which is a positive number. @




Entropy and Irreversibility

Table 1.1. Entropy Change of the Universe Due to Natural Processes.

Entropy -
ntropy

Entropy change of
Type of change

Irreversible process | change of the
irreversibility of the
the system local
universe

surroundings

Isothermal dissipation of

work through a system into 0 11/%4 11,4
internal energy of a T T
External . T T
reservoir
mechanical Adiabatic dissipation of T T
irreversibility work into internal energy of CP In _f 0 CP In _f
a system Ti Vi
Internal
Free expansion of an ideal V V
mechanical °f 0 °f
oas nRIn v nRIn v
irreversibility L L
External Transfer of heat through a
thermal medium from a hot to a 0 2 . 2 2 o 2
irreversibility cooler reservoir TZ Tl T2 Tl
Chemical Diffusion of two dissimilar
2RIn2 0 2RIn2

1R gL aT1 31 bingll inert ideal gases
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Entropy and Nonequilibrium States

Consider, the following process involving internal thermal irreversibility. A thermally conducting bar, brought to a no

uniform temperature distribution by contact at one end with a hot reservoir and at the other end with a cold reservoir, is

removed from the reservoirs and then thermally insulated and kept at constant pressure. An internal flow of heat will

finally bring the bar to a uniform temperature, but the transition will be from an initial nonequilibrium state to a final

equilibrium state.

It is obviously impossible to find one reversible process by which the system may be brought from the same initial to the same

final state.

Let us consider the bar to be composed of an infinite number of infinitesimally thin sections, each of which has a different

initial temperature but all of which have the same final temperature. Suppose we imagine all the sections to be insulated

from one another and all kept at the same pressure and then each section to be put in contact successively with a series of

reservoirs ranging in temperature from the initial temperature of the particular section to the common final temperature.

This defines an infinite number of reversible isobaric processes, which may be used to take the system from its initial non

equilibrium state to its final equilibrium state.

We shall now define the entropy change as the result of integrating dQ/T over all of these reversible processes. In other

words, in the absence of one reversible process to take the system from i to f we conceive of an infinite number of

reversible processes - one for each volume element.

Let us consider the uniform bar of length L shown in fig. 1.8 A typical volume element at x has a mass
dm = pAdx

Where p is the density and A the cross sectional area. The heat capacity of the section is

Copdm=CppAdx
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Entropy and Nonequilibrium States

Let us suppose that the initial temperature distribution is linear, so that

the section at x has an initial temperature.

To—TL
L

T=T,— x
If no heat is lost and if we assume for the sake of simplicity that the
thermal conductivity, density and heat capacity of all sections remain
constant, then the final temperature will be
_To+ T,
r= 2

Integrating dQ/T over a reversible isobaric transfer of heat between

the volume element and a series of reservoirs ranging in temperature

from T; to Trwe get for the entropy change of this one volume element.

77777

N

Y

o
£
~

0 x
Initial state ¢ Final state

b

Figure 1.8. Process exhibiting internal thermal irreversibility.

L

CopAd fodT Cop Adxlnt
PP X —— = Lpp X n—
r T T,
Ty
= (Cp pAdx In
T _TO—TLx
0 L
T, To_T,
= (Cp pAdx In (ﬁ_ LT,

)
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Entropy and Nonequilibrium States

Upon integrating over the whole bar, the total entropy change is

T,
Sf_Si—_CppAf In (f— ‘sz )dx

Which after integration and simplification, becomes

T, T,
Se—S;=—Cpl |14+ InTf + InT, — InT
s ”( rt To— T, ° To—T, 0)

To show that the entropy change is positive,
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let us take a convenient numerical case such as T, = 400°K, T, = 200°K, whence T, = 300°K

then,

1
Sp— 8= 230 Cpl(2_30+ 2477 + 2.301 — 2x2. 602) = 0.021 Cp

The same method may be used to compute the entropy change of a system during a process
from an initial non equilibrium state characterized by a nonuniform pressure distribution to
a final equilibrium state where the pressure is uniform.




Principle of the Increase of Entropy

The entropy change of the universe associated
with each of the irreversible processes treated up
to now is positive. We are led to believe,
therefore, that whenever an irreversible process
takes place the entropy of the universe increases.
To establish this we take adiabatic process only,
since we have already seen that the entropy
principle is true for all processes involving the
irreversible transfer of heat. We start the proof by
considering the special case of an adiabatic
irreversible process between two equilibrium
states of a system.

1. Let the initial state of the system be
represented by the point i on the generalized
work diagram of fig 1.9 and suppose that the
system undergoes an irreversible adiabatic
process to the state f. Then the entropy change is

AS =S; - Sf

Figure 1.9. Cycle which contradicts the second law unless 5y > §;
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Principle of the Increase of Entropy

A temperature change may or may not have taken place. Whether or not, let us cause the system to undergo a reversible
adiabatic process f — k in such a direction as to bring its temperature to that of any arbitrarily chosen reservoir, say, at T,
Then, since Sp = Sk
AS =S, —S;
Now suppose that the system is brought into contact with the reservoir and caused to undergo a reversible isothermal
process k —j until its entropy is the same as at the beginning. A final reversible adiabatic process j — i will now bring the
system back to its initial state, and since S; = §;,
AS =S5 — S;

The only heat transfer Q that has taken place in the cycle is during the isothermal process k — j, where

Q=T (S —Sk)
A net amount of work W has been done in the cycle, where W=Q
It is clear from the second law of thermodynamics that the heat Q cannot be positive, for then we would have a cyclic
process in which no effect has been produced other than the extraction of heat from a reservoir and the performance of an
equivalent amount of work. Therefore Q < 0, and

T’ (S; — Sk) <0, And finally oS = 0.
2. If we assume that the original irreversible adiabatic process took place without any change in entropy, then it would be
possible to bring the system back to i by means of one reversible adiabatic process. Moreover, since the net heat
transferred, in this cycle is zero, the net work would also be zero. Therefore, under these circumstances, the system and its
surroundings would have been restored to their initial states without producing changes elsewhere, which implies that t
original process was reversible. Since this is contrary to our original assertion, the entropy of the system cannot rem
unchanged. Therefore

AS > 0.
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Principle of the Increase of Entropy

3. Let us now suppose that the system is not homogeneous and not of uniform temperature and
pressure and that it undergoes an irreversible adiabatic process in which mixing and chemical reaction
may take place. If we assume that the system may be subdivided into parts (each one infinitesimal, if
necessary) and that it is possible to ascribe a definite temperature, pressure, composition etc. to each
part, so that each part shall have a definite entropy depending on its coordinates, then we may define
the entropy of the whole system as the sum of the entropies of its parts. If we now assume that it is
possible to take each part back to its initial state by means of the reversible processes described in (1),
using the same reservoir for each part, then it follows that AS of the whole system is positive.

It should be emphasized that we have had to make two assumptions, namely, (1) that the entropy of a
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system may be defined by sub dividing the system into parts and summing the entropies of these parts
and (2) that reversible processes may be found or imagined by which mixtures may be unmixed and
reactions may be caused to proceed in the opposite direction.

The behavior of the entropy of the universe as a result of any kind process may now be represented in
the following succinct manner.

AS (universe) > 0

Where the equality sign refers to reversible processes and the inequality sign to irreversible processes.




Application of the entropy principle

We have seen that whenever irreversible processes take
place the entropy of the universe increases. In the actual
operation of a device, such as an engine or a refrigerator,
it is often possible to calculate the sum of all the entropy
changes. The fact that this sum is positive enables us to
draw useful conclusions concerning the behaviour of the
device. An important example from the field of
refrigeration engineering will illustrate the power and
simplicity of the entropy principle. Suppose it is desired
to freeze water or to liquefy air, i.e, to lower the
temperature of a body of finite mass from the
temperature T; of its surroundings to any desired
temperature T,. A refrigerator operating in a cycle
between a reservoir at T; and the body itself is utilized
and after a finite number of complete cycles has been
traversed a quantity of heat Q has been removed from the
body, a quantity of work W was been supplied to the
refrigerator and a quantity of head Q + W has been

rejected to the reservoir as shown in fig. 1.10.

Reservoir ot T
A

.

Q@+W

Refrigerafo
A

@Q

Body fo be
lowered in temp
from 1 to 7,
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Figure 1.10 Operation of refrigerator in lowering the temperature

of a body from that of its surrounding T, to any desired value T,.




Application of the entropy principle

Listing the entropy changes, we have
AS of the body =S, - S,
AS of the refrigerant = 0

Q+W
T;

AS of the reservoir =

Applying the entropy principle

Q+W
Sz =S+ 20

Multiplying by T; and rearranging we get
W =T (S2 —51)—@Q
It follows that the smallest possible value for W is

W (min) =T, (52— 51) —Q

If tables of the thermodynamic properties of the material are available, a knowledge of the initial

and final states is all that is needed to read from the tables the values of S; - S, and if the body

tee

undergoes an isobaric process of Q. The calculated value of W (min) is used to provide an estima

of the minimum cost of operation of the refrigeration plant.
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Entropy and Unavailable Energy

Suppose that a quantity of head Q may be extracted from reservoir at the temperature T and that it is
desired to convert as much as possible of this heat into work. If a colder reservoir is at the temperature
T and that it is desired to convert as much as possible of this heat into work. If a colder reservoir is at

the temperature T'. A Carnot engine may be used, to derive amount of work, where

W = 1 r
-o(1-7)

The lower the temperature of the colder reservoir, the greater will be the output of work. If T, is the

temperature of the coldest reservoir then,
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Wimax) = @ (1 - E)

T
Which represents the maximum amount of energy available for work when Q units of heat are
extracted from a reservoir at T. It is obvious therefore, that any energy which resides with the reservoir at
T, and which may be extracted only in the form of heat is in a form in which it is completely unavailable

for work.

whenever an irreversible process takes place, the effect on the universe is the same as that which would be

produced if a certain quantity of energy were converted from a form in which it was completely available
for work into a form in which it is completely unavailable for work. This amount of energy E is T, times@

the entropy change of the universe brought about by the irreversible process.




Entropy and Unavailable Energy

Since the general proof of this is somewhat abstract, let us consider first a special case, namely, the irreversible
conduction of heat under a finite temperature gradient. Suppose that heat Q is conducted along a bar from a region at
temperature T, to a region at temperature T,. After conduction has taken place, we have heat Q available at the lower

temperature T,, of which the following amount is available for work:

. . T
Maximum work after conduction = Q ( - T—O)
2

If conduction had not taken place, heat Q would have been available at the higher temperature T,, and the maximum

amount of work that could have been obtained from this is

Maximum work before conduction = Q ( - ?)
1

Evidently the amount of energy E that has become unavailable for work is the difference.

T, T, Q Q .
E=Q(L—ﬁ)—Q(1—ﬁ)=TbG;—i)=%ASﬁmwwﬂ

}-U
s
o
™
=
P
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O
=
o

This is true for the special case of heat conduction. Since it is not possible to handle all irreversible processes in this
simple manner, we shall have to adopt a more abstract point of view, in order to establish the proposition generally.
Consider a mechanical device such as a suspended weight or a compressed spring capable of doing work on a system.
Suppose the system is in contact with a reservoir at the temperature T. The mechanical device and the reservoir at T
constitute the local surroundings of the system. Suppose an irreversible process takes place in which the mechanical
device does work W on the system, the internal energy of the system changes U; to Urand heat Q is transferred between

the system and the reservoir. Then the first law demands that

Q=U;—U;+W

And the second law that

S — S (System and local surroundings) > 0.




Entropy and Unavailable Energy

Now suppose that it is desired to produce exactly the same changes in the system and the local surroundings that
resulted from the performance of the irreversible process, but by reversible processes only. This would require, in
general, the services of Carnot engines and refrigerators, which in turn, would have to be operated in conjunction with
an auxiliary mechanical device may be considered, as usual to be either a suspended weight or a compressed spring. For
the auxiliary reservoir let us choose the one whose temperature is the lowest say, T, These constitute the auxiliary
surroundings. With the aid suitable Carnot engines and refrigerators all operating in cycles in conjunction with the
auxiliary surroundings, it is now possible to produce in the system and the local surroundings by reversible processes
only, the same changes that were formerly brought about by the irreversible process. If this is done, the entropy change
of the system and the local surroundings is the same as before since they have gone from the same initial states to the
same final states. The auxiliary surroundings, however, must undergo an equal and opposite entropy change, because
the net entropy change of the universe during reversible process is zero.

Since the entropy change of the system and local surroundings is positive, the entropy change of the auxiliary surroundings
is negative. Therefore the reservoir at T, must have rejected a certain amount of heat, say E. since no extra energy has
appeared in the system and local surroundings, the energy E must have been transformed into work on the auxiliary
mechanical device. We have the result therefore that, when the same changes which were formerly produced in a system
and local surroundings by an irreversible process are brought about reversibly, an amount of energy E leaves an auxiliary
reservoir at T, in the form of heat, and appears in the form of work on an auxiliary mechanical device. In other words,
energy E is converted from a form in which it was completely unavailable for work into a form in which it is completely
available for work. Since the original process was not performed reversibly, the energy E was not converted into work,
and therefore E is the energy that is rendered unavailable for work because of the performance of the irreversibl

process.
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Entropy and Unavailable Energy

[t is a simple matter to calculate the energy that becomes unavailable during an irreversible process. If the
same changes are brought about reversibly, the entropy change of the system and local surroundings is the
same as before, namely, S;- S;. The entropy change of the auxiliary surroundings is merely the entropy change
of the auxiliary reservoir due to the rejection of E units of heat at the temperature T, that is - E/T,. Since the

sum of the entropy changes of the system, local surroundings, and auxiliary surroundings is zero, we have.

Se— S E—O
f i TO_

Hence E=Ty(S —Si)

Therefore, the energy that becomes unavailable for work during an irreversible process is T, times the entropy
change of the universe that is brought about by the irreversible process. Since no energy becomes unavailable
during a reversible process, it follows that the maximum amount of work is obtained when a process takes
place reversibly.

Since irreversible processes are continually going on in nature, energy is continually becoming
unavailable for work. This conclusion, known as the principle of the degradation of energy, was first developed
by Kelvin and provides an important physical interpretation of that mysterious quantity, the entropy change of
the universe. It must be understood that energy which becomes unavailable for work is not energy which is

lost.

The first law is obeyed at all times. Energy is merely transformed from into another. In picturesque language, ong

may say that energy is “running downbhill”.
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Entropy and Disorder

It has been emphasized that work, as it is used in thermodynamics, is a macroscopic concept. There
must be changes that are describable by macroscopic coordinates. Haphazard motions of individual
molecules against intermolecular forces do not constitute work.

Work involves order or orderly motion. Whenever work is dissipated into internal energy, the
disorderly motion of molecules is increased. Thus, during either the isothermal or adiabatic dissipation
of work into internal energy, the disorderly motion of the molecules of either a reservoir or a system is
increased. Such processes therefore involve a transition from order to disorder.

Similarly two gases that are mixed represent a higher degree of disorder than when they are separated.
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[tis possible to regard all natural processes from this point of view, and in all cases the result obtained is
that there is a tendency on the part of nature to proceed toward a state of grater disorder.

The increase of entropy of the universe during natural processes is an expression of this
transition. In other words, we may state roughly that the entropy of a system or of a reservoir is a
measure of the degree of molecular disorder existing in the system or reservoir. To put these ideas on a
firm foundation, the concept of disorder must be properly defied. It is shown in statistical mechanics
that the disorder of a system may be calculated by the theory of probability and expressed by a quantity

B known as the thermodynamic probability. The relation between entropy and disorder is then shown

to be @
S = (constant) In B




Entropy and Disorder

This means that a non-equilibrium state corresponds to a certain degree of disorder and therefore to a
definite entropy.

According to this relation, when the entropy of an isolated system increases, the system is proceeding
from a state of lower to a state of higher probability. That is the direction in which natural processes take
place is governed by the laws of probability. The second law of thermodynamics is therefore seen to be
statistical law.

The statistical character of the second law arises from the fact that the motions of individual molecules cannot be
directed or controlled by any human agency. Suppose, for example that a vessel containing a gas were divided
into two compartments by a partition in which there was a small trap door and that, standing by the trap door,

there were a superhuman being called a Maxwell demon, since the idea was first propounded by James Clerk
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Maxwell. Suppose that the demon opened the trap door only when fast molecules approached, thus allowing the
fast molecules to collect in one compartment and slow ones in the other. This would obviously result in a
transition from disorder to order, thus constituting a violation of the second law. If the trap door were left open
and unattended by a Maxwell demon, there would be a small probability of a separation of the fast from the slow
molecules, but a much larger probability of an even distribution.

Imagine a telegraphic system in which the receiver may exist in a large number B, of possible states, all of
them of the same probability. When information is received, the number of possible states is reduced to

B;. We take the logarithm of the ratio B;/B; as a measure of the information /. Thus the equation e

I; = (Const.)ln&
By




Entropy and Disorder

When compared with the relation between entropy and
thermodynamic probability.

S = (constant) In B,
and when the two constants are considered to be equal, yield the
result that

S51=8—1;
Where, S, = (constant)InB, is the initial entropy, and §; =
(constant) In B, is the final entropy with the information I;. Thus, the
information corresponds to a negative term in the final entropy of a
physical system, or

Information = negentropy.
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Entropy and Direction. Absolute Entropy

The second law of thermodynamics provides an answer to the question that is not contained within the
scope of the first law, namely, “In what direction does a process take place?” The answer is that a process
always taken place in such a direction as to cause an increase in the entropy of the universe. In the case of
an isolated system it is the entropy of the system that tends to increase. To find out, therefore, the
equilibrium state of an isolated system it is necessary merely to express the entropy as a function of
certain coordinates and to apply the usual rules of calculus to render the function a maximum. When the
system is not isolated but instead, let us say, is maintained at constant temperature and pressure, there
are other entropy changes to be taken into account. It will be shown later, however, that there exists
another function, known as the Gibbs function, referring to the system alone whose behavior determines
equilibrium under these conditions.

In practical applications of thermodynamics one is interested only in the amount by which the entropy of
a system changes in going from an initial to a final state. In cases where it is necessary to perform many
such calculations with the minimum of effort, for example, in steam engineering, in problems in
refrigeration and gas liquefaction, etc., it is found expedient to set up an entropy table in which the
“entropy” of the system in thousands of different states is represented by appropriate numbers. This is
done by assigning the value zero to the entropy of the system in an arbitrarily chosen standard state and
calculating the entropy change from this standard state to all other states. When this is done, it is
understood that one value of what is listed as “the entropy” has no meaning, but that the difference betwee

two values is actually the entropy change.
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Entropy and Direction. Absolute Entropy

It is a very interesting and also a very important question in physics as to
whether there exists an absolute standard state of a system in which the entropy
is really zero, so that the number obtained by calculating the entropy change
from the zero state to any other represents the “absolute entropy” of the system.
It was first suggested by Planck that the entropy of a single crystal of a pure

element at the absolute zero of temperature should be taken to be zero. Zero
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entropy, however, has statistical implications implying in a rough way, the
absence of all molecular, atomic, electronic and nuclear disorder. Before any
meaning can be attached to the idea of zero entropy, one must know all the
factors that contribute to the disorder of a system.

An adequate discussion requires the application of quantum ideas to statistical

mechanics.




First order transition. Clapeyron’'s Equaton

In the familiar phase transition - melting, vaporization and sublimation as well as in some
less familiar phase transitions such as from one crystal modification to another, the
temperature and pressure remain constant while the entropy and volume change. Consider
n, moles of material in phase i with molar entropy s and molar volume v ® cc. Both s
and v D are functions of T and P and hence remain constant during the phase transition
which ends with the material in phase f with molar entropy s @ and molar volume v @, The
different phases are indicated by superscripts in order to reserve subscripts to specify

different states of the same phase or different substances. Let x equal the fraction of the
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initial phase which has been transformed into the final phase at any moment. Then the
entropy and volume of the mixture at any moment, S and V, respectively are given by
S=ny(1—=%x)s® +nyxsh
V=ny(1—=x)s® +n,xs
And S and V are seen to be linear functions of x

If the phase transition takes place reversibly, the heat (commonly known as a latent heat)

transferred per mole is given by e
=T (S(f) — S(i))




First order transition. Clapeyron’'s Equaton

The existence of a latent heat, therefore, means that
there is a change of entropy. Since

dg = —sdT +vdP

- (), - (@),

We may characterize the familiar phase transition by
either of the following equivalent statements.
1. There are changes of entropy and volume
2. The first order derivatives of the Gibbs function

Change discontinuosly.

Any phase change that satisfies these
requirements is known as a phase change of the
first order. First order transitions are
represented crudely by the three graphs on the
left hand side of fig. 1.11 The changes that take
place according to the 3 graphs on the right hand
side of Fig 1.11 are characteristics of a phase
change of the second order, since as we shall see
later, in such a phase change the second order
derivatives of the Gibbs function change
discontinuously.
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Figure 1.11. First order and second order

phase transition.




First order transition. Clapeyron’'s Equaton

In the case of a first order phase transition, consider the reversible
isothermal isobaric change of 1 mole of substance from phase i to phase

f. using the first T ds equation.

Tds= C, dT+T(gf,) dv,

And integrating over the whole change of phase, remembering that (dP/9T)

\%

is independent of v, we get.
T (S(f) — S(l)) — T (v(f) — v(l))
The lefthand side of this equation is latent heat per mole,

dP [

AT T? - v0)

This equation is known as Clapeyron’s equation, applies to any first-order

change of phase transition that takes place at constant T and P.
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First order transition. Clapeyron’'s Equaton

It is instructive to derive Clapeyron’s equation in another way. We know that
the Gibbs function remains constant during a reversible process taking place
at constant temperature and pressure.
Hence for a change of phase at T and P.
g® = g
and, for a phase change atT + dT and P + dP.

gD +dg® = g 4 qgN

Bl Y [ JoId

Since,g(i) = g(f),we get dg(i) — dg(f);
—sWdr +vO dp = —sPD dT + v aP

SN _ s

dpP
Therefore E = m

And, finally,

dP [

AT T D = v0)




Second order Transition. Ehrenfest's Equations

» In fig. 1.11 (right hand side) a second order phase transition is seen to be one that takes
place at constant temperature and pressure with no change of entropy or volume.

» The first order derivatives of the Gibbs function therefore change continuously as the
substance passes from one phase to the other. There are only a few transitions that seem to
satisfy these requirements, and even in these cases it is still somewhat doubtful as to
whether, for example there is no latent heat or merely an extremely small latent heat.

» The following processes are among those which are generally regarded by most physicists

as second order phase transitions:

Bl Y [ JoId

1. A ferromagnetic material such as iron or nickel becomes para magnetic at the Curie point.

2. A superconducting metal becomes an ordinary conductor in the absence of a magnetic field
at a definite transition temperature.

3. Certain alloys and chemical compounds undergo an “order-dis-order” transition at a definite

temperature.

4. Liquid helium II become liquid helium I at various temperature and pressures, such as the A

point where T = 2.19°K and P = 38.65 mm.




Second order Transition. Ehrenfest's Equations

In all these processes, one

the phase transition. In

or more of the quantitiesCp, k, and § show discontinuous changes during

some cases, the changes are very small, leading us to believe that a

discontinuous change in all three quantities is a necessary property of a second order transition.

Since,
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It follows that second order transition is characterized by discontinuous changes in the second order

derivatives of the Gibbs function. We may find relations between the changes in these quantities and

the pressure and temperature as follows: Indicating the two phases in question by the superscripts i

and f, we have

s 4 ds® = s 4 gsP
K Ts(i) = Ts(f)

s® = s (atT,P)
(at T +dT,P + dP) @




Second order Transition. Ehrenfest's Equations
Using the second T ds equation we get
e dT —TvpOdp= ¢ dT —Tv gD dp
And, finally

ap ¢ -cP

dT ~ Tv (BD) — g0

For the same phase transition we have also,

Bl Y [ JoId

v®D + dv® = v + dp ) (at T +dT,P + dP)
- Trv® = Tp)

dv = (0v/dP)p dT + (0v/0P) dP,we have

vBWdAT — vk®WdP = v dT — v k) dp

OR

ap  BN- g
ar ~ kOH—g®

These two equations are known as Ehrenfest’s equations
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